中職學(xué)校招生網(wǎng)_55px.com.cn

高中數(shù)學(xué)等比數(shù)列知識點

2025-09-15 05:17:56

高中數(shù)學(xué)等比數(shù)列知識點總結(jié)

上學(xué)期間,說到知識點,大家是不是都習(xí)慣性的重視?知識點有時候特指教科書上或考試的知識。為了幫助大家掌握重要知識點,以下是幫大家整理的高中數(shù)學(xué)等比數(shù)列知識點總結(jié),歡迎閱讀與收藏。

高中數(shù)學(xué)等比數(shù)列知識點總結(jié) 篇1

1.等比數(shù)列的有關(guān)概念

(1)定義:

如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù)(不為零),那么這個數(shù)列就叫做等比數(shù)列.這個常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的表達(dá)式為an+1/an=q(n∈N_,q為非零常數(shù)).

(2)等比中項:

如果a、G、b成等比數(shù)列,那么G叫做a與b的等比中項.即:G是a與b的等比中項a,G,b成等比數(shù)列G2=ab.

2.等比數(shù)列的有關(guān)公式

(1)通項公式:an=a1qn-1.

3.等比數(shù)列{an}的常用性質(zhì)

(1)在等比數(shù)列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),則am·an=ap·aq=a.

特別地,a1an=a2an-1=a3an-2=….

(2)在公比為q的等比數(shù)列{an}中,數(shù)列am,am+k,am+2k,am+3k,…仍是等比數(shù)列,公比為qk;數(shù)列Sm,S2m-Sm,S3m-S2m,…仍是等比數(shù)列(此時q≠-1);an=amqn-m.

4.等比數(shù)列的'特征

(1)從等比數(shù)列的定義看,等比數(shù)列的任意項都是非零的,公比q也是非零常數(shù).

(2)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗證a1≠0.

5.等比數(shù)列的前n項和Sn

(1)等比數(shù)列的前n項和Sn是用錯位相減法求得的,注意這種思想方法在數(shù)列求和中的運用.

(2)在運用等比數(shù)列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.

高中數(shù)學(xué)等比數(shù)列知識點總結(jié) 篇2

1.等比中項

如果在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項。

有關(guān)系:

注:兩個非零同號的實數(shù)的等比中項有兩個,它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。

2.等比數(shù)列通項公式

an=a1_q’(n-1)(其中首項是a1,公比是q)

an=Sn-S(n-1)(n≥2)

前n項和

當(dāng)q≠1時,等比數(shù)列的前n項和的公式為

Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

當(dāng)q=1時,等比數(shù)列的前n項和的公式為

Sn=na1

3.等比數(shù)列前n項和與通項的關(guān)系

an=a1=s1(n=1)

an=sn-s(n-1)(n≥2)

4.等比數(shù)列性質(zhì)

(1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;

(2)在等比數(shù)列中,依次每k項之和仍成等比數(shù)列。

(3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中項:q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項。

記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一個各項均為正數(shù)的等比數(shù)列各項取同底指數(shù)冪后構(gòu)成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是同構(gòu)的。

(5)等比數(shù)列前n項之和Sn=a1(1-q’n)/(1-q)

(6)任意兩項am,an的關(guān)系為an=am·q’(n-m)

(7)在等比數(shù)列中,首項a1與公比q都不為零。

注意:上述公式中a’n表示a的n次方。

高中數(shù)學(xué)等比數(shù)列知識點總結(jié) 篇3

等比數(shù)列求和公式

q≠1時,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)

q=1時,Sn=na1

(a1為首項,an為第n項,d為公差,q為等比)

這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0),等比數(shù)列a1≠ 0。注:q=1時,{an}為常數(shù)列。利用等比數(shù)列求和公式可以快速的計算出該數(shù)列的和。

等比數(shù)列求和公式推導(dǎo)

Sn=a1+a2+a3+...+an(公比為q)

qSn=a1q + a2q + a3q +...+ anq = a2+ a3+ a4+...+ an+ a(n+1)

Sn-qSn=(1-q)Sn=a1-a(n+1)

a(n+1)=a1qn

Sn=a1(1-qn)/(1-q)(q≠1)

轉(zhuǎn)載請注明出處 » 高中數(shù)學(xué)等比數(shù)列知識點

文章標(biāo)題:高中數(shù)學(xué)等比數(shù)列知識點

本文地址:http://balticsea-crewing.com/show-504591.html

本文由合作方發(fā)布,不代表中職學(xué)校招生網(wǎng)_55px.com.cn立場,轉(zhuǎn)載聯(lián)系作者并注明出處:中職學(xué)校招生網(wǎng)_55px.com.cn

免責(zé)聲明:本文僅代表文章作者的個人觀點,與本站無關(guān)。其原創(chuàng)性、真實性以及文中陳述文字和內(nèi)容未經(jīng)本站證實,請讀者僅作參考,并自行核實相關(guān)內(nèi)容。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請聯(lián)系郵箱:dashenkeji8@163.com我們將在第 一 時 間進(jìn)行核實處理。軟文/友鏈/推廣/廣告合作也可以聯(lián)系我。
展開全文

獲取招生簡章

  • 姓名:
  • 專業(yè):
  • 層次:
  • 電話:
  • 微信:
  • 備注:

相關(guān)推薦

剛剛文章

熱門推薦