1/(1+x^2)的原函數(shù)為arctan(x)+C,原函數(shù)是指對于一個定義在某區(qū)間的已知函數(shù)f(x),如果存在可導(dǎo)函數(shù)F(x),使得在該區(qū)間內(nèi)的任一點(diǎn)都存在dF(x)=f(x)dx,則在該區(qū)間內(nèi)就稱函數(shù)F(x)為函數(shù)f(x)的原函數(shù)。
原函數(shù)存在定理若函數(shù)f(x)在某區(qū)間上連續(xù),則f(x)在該區(qū)間內(nèi)必存在原函數(shù),這是一個充分而不必要條件,也稱為“原函數(shù)存在定理”。
函數(shù)族F(x)+C(C為任一個常數(shù))中的任一個函數(shù)一定是f(x)的原函數(shù),
故若函數(shù)f(x)有原函數(shù),那么其原函數(shù)為無窮多個。
例如:x3是3x2的一個原函數(shù),易知,x3+1和x3+2也都是3x2的原函數(shù)。因此,一個函數(shù)如果有一個原函數(shù),就有許許多多原函數(shù),原函數(shù)概念是為解決求導(dǎo)和微分的逆運(yùn)算而提出來的。
例如:已知作直線運(yùn)動的物體在任一時刻t的速度為v=v(t),要求它的運(yùn)動規(guī)律,就是求v=v(t)的原函數(shù)。原函數(shù)的存在問題是微積分學(xué)的基本理論問題,當(dāng)f(x)為連續(xù)函數(shù)時,其原函數(shù)一定存在。
以上就是高考網(wǎng)小編為大家介紹的關(guān)于1/(1+x^2)的原函數(shù)問題,想要了解的更多關(guān)于《1/(1+x^2)的原函數(shù)》相關(guān)文章,請繼續(xù)關(guān)注高考網(wǎng)!
文章標(biāo)題:1/(1+x^2)的原函數(shù)
本文地址:http://balticsea-crewing.com/show-615661.html
本文由合作方發(fā)布,不代表中職學(xué)校招生網(wǎng)_55px.com.cn立場,轉(zhuǎn)載聯(lián)系作者并注明出處:中職學(xué)校招生網(wǎng)_55px.com.cn
免責(zé)聲明:本文僅代表文章作者的個人觀點(diǎn),與本站無關(guān)。其原創(chuàng)性、真實性以及文中陳述文字和內(nèi)容未經(jīng)本站證實,請讀者僅作參考,并自行核實相關(guān)內(nèi)容。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請聯(lián)系郵箱:dashenkeji8@163.com,我們將在第 一 時 間進(jìn)行核實處理。軟文/友鏈/推廣/廣告合作也可以聯(lián)系我。